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Abstract

Many aerospace problems include the requirement for precision pointing

and tracking from oxe accelerating vehicle to another. This paper considers

the use of Kalman filtering for a general class of high precision pointing

and tracking applications and the application of the general framework to a

snecific problem. A g'-ieral framework which contains all known error sources

is dCveloped for a particular Kalman filter. With a covariance sensitivity

ianalysis, this framework can be used to determine the performance of a

reduced order filter and conduct a hardware requirements analysis mid trade

off. In particular, the paper addresses the application of the general

frapework for an aircraft t, satellite pricision tracking nroblem.
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Introduction

There are mamy aerospace problews which include the requiremat for

precision pointing and tracking fron one accelerating vehicle to another.

If knowledge of the position and velocity states of the two vehicles is

perfect, the pointing and tracking problem is straightforward. Unfortunately,

such LJowl(edge is never available. In practice, tie instrumentation on

boar(', the tracking vehicle is imperfect and provides measurement information

which is :orrupted by noise and other unwanted effects. For examle, a

radar tracking device will in general be imperfect because of random phase

front dist:ortion or scintillation noise which might be target dependent and

could pre-vent the requircd degree of accuracy from being achieved. In

addition, the target vehicle dynamics might be unknown and must therefore

W modeled zLs a random process. For exam.le, when passively tracking

a-iothcr aircraft, the aircraft acceleration proAle is unknown but could be

modeled as a first order Markov process [9,10,11]. The model for a low

orbit satcllite could include the low order gravitational harmonics for the

Earth; high order harmonics and other perturbations could then be modeled

as random nrocesses. Ini general, therefore, perfect knowledge of the system

state is not available in the pointing and tracking pioblem, and stochastic

estimation techniques are necessary.

This paper contains the development of a general framework for applica-

tion of the extended Kalman filter to the precision pointing and tracking

problem in order to estimate certai, necessary physical variables in the

problem. The ftzdame.atal system dynamics are described by a set of primary

state equations to u.hich are adjoined the state oquations necessary to



describe instrument errors. This total state description is the "true

systeW' model. However this model is of high order (typically 60-100

states) and the optima filter based upon it could not therefore be imple-

mented with a small on-board computer. On the other hand, the true system

model or truth model may be used in a covariance senitivity analysis to

yield the true performance of a rTduced order filter which is small enough

for on-board implementation. By testing the sensitivity of approximations

from the truth model to the rpmd.ced order filter, a hardware trade-off

analys.Ls will indicate instrumentation requirements. The reason for this

approafi along with the necessary sensitivity equations Is more fully

developed in reference [21]. This general approach is applied in tie paper

to the particular problem in which a high altitude aircraft must track a

low polar orbit satellite to precise degree of accuracy. Some of the

results show'ng the sensit ivity of the tracking errors to measuring instru-

ment precision are presented. More generally, the framework has been

applied by the authors or could be applied i:, aircraft to aircraft, moving

grotsid vehicle te aircraft, and satellite to satellite problems.

Work in the area of Kalman filtering for pointing and tracking includes

that by Fitts [1,2,3,41 in which filtering is accomplished in the inertial

reference frame. Detailed modeling of error sources was not considered.

A general study by Pearson [5,61 again does not include error source modeling.

Other studies in this area by Landau [71, Fitzgerald [8,91 and others

[10,11,12,131 do not include error source modeling. None of the references

considers the particular problem of aircraft to satellite tracking.
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General Framework

The fundamental objective is to establish an accurate line of sight to

the target, vehicle being tracked, along which som form of electmwagnetic

link will be maintained. For exmple, to illuminate a target with a very

narrow heamwidth communications laser could require tracking accuracies in

the order of microradians. Even with highly sophisticated measuring and

control iLstruments it may not be possible to achieve such accuracy without

using optimel estimation and control.

This section considers the .iodeling of the physical variables necessary

to establish a line of sight in both position and velocity and the modeling

of the instrument error sources inherent in the problem of estinution for

pointing and tracking. The approach is general as it may be used for a

number of applications ot which only one is shown in the next section.

In this general approach it ir assumed that the target is passive.

That is, it does not assist the tracker in any way hy providing target state

information. This assumption implies that sore model Lust be developed for

the target to obtain the estimate of target acceleration which is necessary

to solve the tracking problem.

Figure 1 illustrates the basic tracker geometry. The tracking device

is controlled in aziwuth and elevation relative to a reference coordinate

system. The tracker coordinate system is shown in this figure. Note that

the xt axis aligns with the tracking device bore-sight. For perfect

tracking this will lie along the line of sight between tracker and target.

Figure 2 illustrates the two coordinate frames of primary interest. The

tracker frame is misaligned from the line of sight frame because of imperfect
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tracking. Note that this misalignment is described by two Euler angle rota-

tions 6c and 6n which are chosen ir, general to be about axes where mis-

alignment mrasuremnts would in practice be available from a sensor.

The need for a target acceleration estimate to solve the tracking

problem has already been indicated. To control the tracking device it is

necessary to estimte the line of sight angular velocity and the tracker

misalignmr*. These estimates provide rate and position feedback control

respectively to the tracker motors. In some ,roblems it may also be neces-

sary to estimate range and range rate of the target. Now with the exception

of target acceleration, all these parameters are line of sight and tracker

parameters and since ideally the tracker fr, will coincide with the line

of sight frame it is logical to choose the latter frame in which to model

the system. This choice has the disadvantage that target acceleration mist

be transformed from inertial coordinates in which estimates are most likely

to be available, into tracker or line of sight coordinates. An alternative

would he to model completely in the inertial fram but this would necessitate

transforming the line of sight and tracker states into inertial coordinates.

This paper uses the line of sight frame for modeling since this involves

the least number of coordinate transformations.

The system dynamics is simply described by considering the relative

position vector of the target from the tracker. Let r be the relative

position vector and wls the angular velocity vector of the line of sight

relative to inertial space. Then, by the Theorem of Cariolis,

dri dr +rdt' = + tIs × r (1)
,i aIls
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where 1iindicates the differential is taken with respect to inertial

space, etc. Similarly,

d2r _ d2r +Zws x i + d s +s x •s x r (2)
dt 2  dt2 i s  dt dt

i Is is is

Finally, the notion between the tracker coordinate frae and the line of

sight coordinate frame is characterized by the following matrix differential

equation (151:

Ct Ct W * (3

is is Is ls is

Whomre C t is the coordinate transformati(m matrix fromi line of sight

coordinates to tracker coordinates and Wls, Wt are the line of sight and

tracker an" lar velocity skew symmetric "cross product" matrices respectively.

1-juations (1), (2) and (3) are usLed to obtain the pri'aary system state equa-

tions excluding target state equations as follows:

From equation (1) let R = range r 'r and let V = range rate, then:
r

=Vr (4)

Let a r he the relative acceleration vector of target from tracker which is

equal to aTARCIT - MCKTA' w be the awnular velocity relative to

inertial space, subscripts x, y, and z indicate vector components in

a right hand orthogonal coordinate system, superscripts is and t indicate

the relevant coordinate system, and the small angle approximations to be

used as

| *•" i m F i -1: 5



sin dc - ac,

sin an - an,

cos 6E a Cos n 1,

6E an -0.

From equations (2) and (3):

•-Is I t 2 Vr Is
'a w +V

Is. R r RIs•ls -- •az R yWs
)" y

Is t -r Is is t

- + ,ba l.- (6)

is w t n t W

z tx y Z

6c art
ix (5)

R

I t: 2 t r Is Is t
Jl_ ay R •lz -•ly tx

Is t vtx

Is

E ls t + 6n wt (7)

Is Wtyt

;n - wlsz tz 6c wt (8)

t + R[ls +2 / lsz +' _6 6c a t (9)



Equations (4-9) are the state equations describing the range, range

rate, line of sight angular velocity and tracking device misalignment. Noteis

that the component of lines of sight angular velocity wuls is not included
x

as a state, since angular velocity along the line of sight is not required

tfor control. iHwever the tracker angular velocity vec t or (o, which is

included as a system parameter, is required along all three tracker axes.

The relative acceleration vector ar is the difference between the target

acceleration vector atar and the tracker acceleration vector at which is

a system par~uneter. The state modeling for target acceleration will be

d-scribed below. It is important to note at this point that the incluasion

of system parameters such as the angular rate of the tracker implies that

mt'asurements of those parameters are availahle.

The modeling of the target acceleration is the most difficult part of

the problem. The reader will recall that no target state information is

directly available since the targcet is; asstmed generally to be passive. If

the target vehic!' is an aircraft, then am exponentially time correlated

acceleration model, which implies that the target motion is uncertain, may

be used 19,111. Clearly, .€ more information about the target acceleration

is available, then this should be used in the nodel. For examnle, if it is

certain that the target does not maneuver, then a zero acceleration model

is aporopriate.

If the target is a satellite, then accurate equations of motion may be

developed and utilized to give an acceleration model. A. initial orbit may

be give- through ephemeris data. This might be no more than an initial orbit

prediction necessary for -atellite acquisition. The gravitaticnal motion

due to the non-spherical Earth, the Stu and the Moon can be accurately
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modeled although the model may be complex. The effects of drag and solar 4
radiation pressure are more difficult to describe ,.,kce they depend on the

physical chaiacteristics of the satellite, i.e., its mass, surfact area

and shape. Furthermore, if the satellite is unknown then there my be a

finite probability that the s-tellite is indepeo'dently commanded to execute

a AV ma',eiver or attitude change. It may, in fact, be acceptable to

ignore all these effects but they must initially be included in the truth

model until the filter sensiti-Aty to them,, has been detelaiined for a

particular orbital condition.

SPerfect knowledge of the satellite physical characterisiics cannot be

assumed in the general approach to the problem. It is reasonable however

io assume some statistical knowledge. To describe the atmospheric drag and

solar radiation pressure effects, the use of a ballistic coefficient and

solar pressure coeffic'?nt is necessary. Since the satellite physical

characteristics are unlikel1 to change with time these coefficients can

reasonably be modeled as random biases with the general state equation

x = 0.

Satellite AV ,a, ieuvers will most probably be of short duration

isiless, for example, the satellite is continually thruLstin, to follow a

drag-free orbit. NWtoeling is best accomplished based on some a priori

klaowledge of the sa'4cllite ftuctiou and adaptive techniques. Alternatively,

a simpler approach is to assume a :iorst case size and probability of

maneuver and thereby retain a large measure of uncertainty in the orbit.

This safe approach can however unnecessarily degrade the ultimate tracking

capability if the maneuver does not occur.

8
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In sumfnary, each type of target vehicle presents a different prublem

the physics of whidh must be carefully analyzed. I f nio infomat ion is

available then the exponentially correlated rmadcm variable model [9,111

may je used. Any information which is available uist be used if the best

modcl is to be found.

The problem of measurement errors was briefly described in the intro-

duction but the extent of this problem was not explained. When a reduced

order filter Is applied in the real world itv; perfonmance can be highly

sensitive to measurement errors. To implement a reduced order filter it is

therefore necessary to conduct a full sensitivity analysis which implies

that the systtm truth model vwst include a]l known error sources. The sub-

scquet, . analysis will hopefully show that many of the errors can be ignored

or discarded and what zhe expected filter degradation will be.

Particular applications of this grneral framework generate slightly

di ffereat measurement requiraments. The following in a description of a

typical measurement set which will suit most high precision requirements.

Wak'surements are assumed to be available for the following states and

parameters:

ttracker angular velocity, w.;

tracker origin inertial acceleration, a t;

tracking device misalignment from the irue line of sight, 6E, 6n;

range, R; and

range rate, Vr.

The length of this paper prohibits a detailed description of every measure-

nvzar, but to illustrate the principles, consider the measurement model of

tracker velocity. The three rate gyroscopes are mounted along the three

9



tracker axes and yield the bieasureme!nt

t. = t +6k wt + b + c

tm i gi i gi gri

+ k at + [A c tW] + (10)f1--1 il at ] i gi.

i = xyz.

Now the coi1xonents of wt are wtx, wry and wtz which are the true

angular velocity corponents along the tack" x, y and z axes. The

measurement vector components are wtX' 0tym and wtzm respectively.

The terms 6 kgi are torque scale factor errors. During manufacture and

assembly of the rate gyro, the calibration process will remove the torque

scale factor error as far as possible but there will remain a small residual

component which cannot be compensated for. Since suc& a scale factor error

is unlikely to change with time, particularly in the short terms, a random

bias modcl is chosen. This model has the differential equation for the

x-gyro scale factor error for example of

6k gx= 0.

T'he statistics of this factor .ay be found from gyro test data or from an

engineering estimate. Note that the random bias mode implies that both

mean 1,16k 1 and second moment E16kgx2• stay constant with time.
I gxI gx stycntntwtIie

The drift characteristic of a rate gyro can be expressed as the sum of

I constant bias drift and a time varying drift. The terms bgi, i = x, y, z

10



are bias drifts which describe tutose components of gyro drift which do not

change in tine. The time varying drifts are represented by the terms

cg i x, y, z. Again, the bias terms bgi are modeled using the biascggi

random variable, for example

b - 0.gx

The model used for the c terms would depend on the type and quality

of wyro. Typically such time correlated drifts can be described by expo-

nentially time correlated random variables with the first order differential

equation form, for example

cgx =_Bgx Cgx +•r ý -gx ag Ugx

in which Bgx 1 and Tgx is the drift process correlation time, a
gX~~ T ° gx

Tgx

is the rms value of the process and ugx is a unity variance white driving

noise. Note again however that the model requires knowledge ( f the drift

process in terms of process correlation time and rms value.

A rate gyro is ideally insensitive to accelerations. However, in prac-

tice, a mass unbalance will exist because the center of mass and center of

rotation do not coincide. The mass unbalance coefficients k do, however,il1

tvmai! constant with tine and can therefore again be represented with the

random bias model, for example

k 0xy

where k is the coefficient of mass unbalance along the tracker
XY



x-direction duc to the mass unbalance effect along the tracker y-direction.

If the rate gyroscope is also likely to be sensitive to products of acrelera-

tion or g2-sensitive errors then the model should also include random bias

coefficients to accourt for these effects.

In practice, the axes along which the rate gyroscopes are sensitive do

not coincide with the true tracker coordinates. A measuremeat from one rate

gyro will therefore include components, however small, of angular velocity

along the other two tracker axes. By assuming that the displacement r gles

are small enough for small angle approximations to be valid, the coordinate

traisformation matrix can be approximated as follows. T is the coordinate

transformation matrix from gyro coordinates (G) to trackei coordinat )

where

where

0 Oyz Ozy

TT

ACG = Oxz 0 Ozx

Oxy Jyx 0

Thus tne term [A cGTjJ, i = x, y, z accounts for this error angle trans-

fonation and since misalignment will be constant with time the 0ij terms

can be described by the random bias model, for example

exy

Finally, an additive white noise •gi i = x, y, z is included in the model

12



to account for those higher order effects which are not otherwise modeled.

Choice of variance for this noise may be difficult to determine but should

be of the same order of magnitude as that of the smallest modeled effect.

At this point it is worthwhile reminding the reader that the above

i..",del inctudes all reasonable and common sources of error. A sensitivity

analysis will indicate the dominant error terms, but note that each problem

and associated measurement sensor will produce different results. Hopefuily,

the effect of may of the error terms in a particular application will be

small reiative to the requirc.! accuracy and only the dominant errors will

therefore need tc; bei included in the filter.

The following is a srmnary of the remaining measurement models with a

brief description of each term.

Tracker Acceleration. The measuremint model for tracker atcceleration is

aat ai + Cai + kil ti

t3+k i2 'ii k i3 a tj + ki4 a tk

+ [A A at] ai = x,y,z ; jkji (11)-A+ Ei ;j k-

in which at, i = x, v, z are the easurements of the true tracker origin

m
acceleration components ati, i = x, y, z. The accelerometer scale factor

errors kai •id bias errors bai are modeled again as random biases. cai

are accelerometer drift errors modeled as first order exponentially corre-

lated random variables. The coefficients kl, ki 2 , k 3  and k are

non-linear calibration coefficients to account for g2 , g3 and cross track

13



accelerations respectively and are modeled as random biases. A is an

error angle transformation matrix relating acceleration in actual (A)

accelerometer coordinates to acceleration in nominal (N) accelerometer

coordinates. The elements of this matrix are small constant angles modeled

as random biases. In general, the n(minal accelerometer coordinate system

does not align with the tracker coordinate system. If necessary, the trans-

formation

A T Nat = C at

can be accomplished. Finally, ai is an additive white noise term to

accouit for the remaining unmodeled errors.

Tracker Angiular Misaligiuvent 6c, 6n (Boresight Error)

The tracker misalignment measurement model is

6 k=(6 +S + 5k +b + (12)
F C C F.Cm

6nm= kn(6n + Sn) + 6k +n (13)

where k and k are deterministic scale factors, S and Sn are

target induced scintillation errors as observed from the tracker frame.

These errors cmn be modeled as coupled first order exponentially time-

correlated random variables with equations

S t -- S nw S +V 2B a a u (14)

S -n S -W S + ur. (15)

i1II4 14



The 6kE and 6k scale factor errors and b nd • bias errors are

modeled using the simple bias random variable model. Filially, • and E

are additive white noise terms to account for tunodeled effects.

_Rae. The range imasurewmt model is

R = kr (R+ Sr) + k R+ br + Cr (16)

where kr is a deterministic scale factor, Sr is a range scintillation

error modeled as a first order exponientially correlated random variable.

k r a scale factor error and br, a bias error are modeled as random

biases. Ck is an additive white noise to account for uzmedeled effects.

Rc_ý_Rate. The range rate measurement model is

Vr k (Vr v) + kv Vr + by A (17)

where the ternms have appropriate significance as for range.

The additional state equations resulting from the above measurement

models are secondary state equations which are adjoined to the primary

state description zo form the full state truth model. For the measurements

described there are 63 secondary state equations. For the typical tracking

problem therefore the total state dimension for the truth model is about 75

depending upon the nuibor of states required to model the target acceleration.

While it is doubtful that any practical problem would require the inclusion

of all the above secondary state equations in the truth model, even a modest

15



requirement to adjoin secondary states results in a large dimension truth

model which could not be handled in an on-board computational facility.

It is important to examine each measurement and decide how that informa-

tion should be used. Clearly, the measurements of 6€, 6n, R and Vr

are direct measurements of primary system states and will therefore form a

system measurement vector. The measurement oi at however is a parameter

value which is substituted into the appropriate state equations. The measure-

ment of Wt could be handled in an identical way. However, in this case the

information can be considered as a pseudo-measurement of the angular velocity

of the line of sight. The justification for this reasoning is that the track-

ing device will ideally follow the line of sight in such a way that the mean

angular velocity deviation between wis and w is zero.

So far, the system truth model state and measurement equations have beeni

developed. Two problems are apparent; the equations are in general nonlinear

and the vector dimensions are too great for the optimal filter to be imple-

mented on board the tracking vehicle. The nonlinearity of the equations is

overcome by linearizing so that the equations for the extended Kalm.a filter

are valid. It is necessary however to implement a filter on board the track-

ing vehicle. A reduced order (dimension) filter must therefore be designed.

In general the performance of a reduced order filter will be sub-optimal

and must be evaluated against the theoretically optimal performance of a

filter based on the full trath state description. This evaluation is carried

out initially using the method of covariance sensitivity analysis described

by Asher and Reeves [19]. However, it can also be shown [201 that the

reduced order filter is in general conditionally biased and to obtain all

the statistical information the results of reference [201 must be applied.

16



The process of designing a reduced order filter using the covariance

sensitivity analysis will not only indicate which errors and perturbations

can be ignored but will also show the degree of precision necessary to

achieve a specified tracking accuracy with a particular reduced order

filter. There is currently no mathematically precise algorithm by which

such a design process can be conducted, but the flow chart in Figure 3

shows the basic method applied. The filter should also be simulated via

Monte Carlo methods.

Am initial intuitive choice of reduced order filter parameters and

states is made. For example, the gyro measurement might be assumed to take

the simple form

Wtim = Wti cgi 'gi.

whcre the p.'edominant drift term has been retained but the remaining terms

have been accounted for by increasing the variance of the additional white

noise C For another example, a sacellite orbit may be assumed to be a

simple two body orbit in which the gravitational harmonics and other pertur-

bations are modeled by a simple additive white noise of suitable variance.

With this basis, the covariance sensitivity analysis is used to tune the

filter by adjusting the reduced order filter parameters so that the estima-

tion error and filter sensitivity are minimized. Note that this will be an

iterative procedure but no changes are made to the system truth model at

this time.

The tuning process will also indicate where the filter is most sensitive

to measurement error sources. An examination of this sensitivity is then

made and areas for possible hardware changes or trade-offs are identified.

17



For exale, it may be apparent that specifications on gyro drift could be

relaxed but angle track scinti lation errors must be reduced. The system

is therefore redesigned and changes are made to both the full state optimal

filter and the reduced order sub-optimal filter before the tuning process

is repeated.

Atplication in Aircraft-to-Satellite Tracking

To illustrate the application of the general framework described above,

consider the problem in which a high altitude aircraft is tracking a low

polar-orbit satellite. Assume the required accuracy is arbitrarily taken

to be on the order of microradians. Applying a covariance sensitivity

analysis will show first, which states must be retained in a reduced order

filter, and secondly, .what the hardware requirements might be in order to

meet or improve on the accuracy requirement.

The system truth model comprises the state and measurement equations

described in the general framework together with a set of target state

equations which describe thc motion of the satellite. The target equations

.I re2

x = vs (18)

V a a + + a.+ a +&s (19)s dg p

B o0 (20)

-0 (21)

where xs and v. are the satellite inertial position and velocity vectors.

The gravitational force due to the Earth is described I,,- the vector ag

18



and for this problem includes ha-monics up to sixth order. The atmospheric

drag force is described by the vector ad which is dependent on a satellite

ballistic coefficient B. The perturbational forces dte to the sun and 4

moon are described by the vectors as and a. respectively and the solar

pressure force is described by the vector ap which is dependent on a solar

pressure coefficient S. Finally, the unmodeled effects of higher order

gravitational harimnxics and other perturbations are accotnted for by the

additive noise vector & which is assibied to be a zero mean white noise.

Assuming that the satellite is passive (but not cooperative), the probability

that the satellite executes any AV maneuver or attitude adjustment is

zero. The physical properties of the satellite such as mass shape, size

and surface area are assumed to remain constant for the duration of tracking.

Thus the best physical knowledge available for the satellite is assumed to

be a mean and standard deviation to describe an expected distrihution of

these satellite physical properties. With this basis, the two coefficients

R and S are chosen to bo rmidom biases with the state description given

by equations (20) and (21).

The resulting truth model for this application has a state vector dimen-

sion of 61, a measurement vector dimension of 5 and a parameter measurement

vector for tracker angular velocity and tracker origin acceleration of

dimension 6. The accelerometer crosstrack errors were assumed small enough

to be neglected. The accelerouteter and gyro bias terms were included into

the initial conditions for the respective correlated drift terms. A reduced

order filter is chosen by making the following simplifications from the

truth model.
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a. Satellite motion can be described by a simple two-body orbit per-

turbed by a wl.'t d-v'i; noise vector. The variance of this vector R s

in the trhAc r. •xel) is increased to account for the two-body approximations.

h. The equaticns describing line of sight angular velocity and range

rate are simplified to remove the terms (see equations S, 6 and 9) which

account for the effect of tracker boresight error. In each equation, a

white driving noise of appropriate variance is introduced to account for

the approximat ion.

c. In each measurement equation, all sources of error are removed and
the varimi~ce of the white driving noise is increased in each case to compen- .

sate for the approximation.

The following set of state and measurement equations results from the

first attempt at a reduced order filter.

State- F~ua i01s

•s - Vs [ (22)
Satellite motion (22)

-__ s + (23)
VN xs

1s - a ris ~s tI o

V•-Is I t r ls Is t--+•ly(4
Is v R arz R IsV I Ws- tx Is(4

Y Line of sight

2 %" angular velocity
• Is 1 t r Is Is t + (25)
Is z R ry- " R- s., is tX Is
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SIs

-+ 6n (26)

Tracker misalignment

= W s Ut - (27)ils tz_•n •sz Utz E 'tx (J7

SV v r Range/ (28)

= + R + ( w} ) js Rang rate

r ar x+ I sz(9

Measurement Equatiotis

Wtim Uti +gi (30)

aiti t ai (31)

6 = 6 + E (32)

"6 =6 + F, (33)
nm n rn

R = R + 1 R (34)

V -- Vr + Vr (35)

Srhe objective of tuning a reduced order filter using the covariance

sensitivity analysis technique is to force the reduced order filter error
covariance to track the true full state filter error covariance as closely

as possible. In practice this is achieved bh adjusting the various filter

,noise parameters while maintaining the truth model parameters fixed aid is

a lng process. If the reduced order filter has been over-simplified and

significant error sources are not modeled, then the filter may be extremely
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difficult to tune or more likely will show a divergent performance

characteristic.

Consider then the filter described above. Fo, the particular orbit

chosep and the initial measuring instrument parameter set, several changes

are necessary before the filter can be tuned. Because of the low orbit

profile, atmospheric drag produces a significant perturbation from the

two-body trajectory and cannot be properly accounted for with white noise.

The drag vector ad must therefore be re-introduced although it is

sufficient to assume a fixed value for the ballistic coefficient B. It

is also necessary to re.-introduce the two states describing target-induced

angle track scintillation to obtain acceptable reduced order filter perfor-

mance. In this case, the target-induced angle track. scintillation noise is

asumed to have a 2-second correlation time. Because this error has a

significant steady sthte standard deviation compared +o other error sources

in the angle track measurement, it is not possible to account for it in the

additive white noise +erm. The covariance analysis for the initial choice

of reduced order filter therefore results ir an increased filter state

dimension from 12 states to 14.

To better illustrate this tuning process, see Figures 3 and 4. Figure 3

slqows the standard deviations (1 - sigma) of the tracker misalignment angle

6C error predicted by the reduced order filter. Tne filter apparently

performs well and a steady state standard deviation of approximately 10 Prad

results. Without carrying out a covariance analysis the engineer might

cor•sider this to be very satisfactory. However, Figure 4 is the result of

the covariance analysis and shows the true standard deviation of 6

22



committed by the particular choice of reduced order filter which produced

Figure 3. In fact, as already explained, it is necessary to re-introduce

the angle track scintillation error in the reduced order filter before

satisfactory performance can be achieved. Figures 5 aid 6 on the other

hand illustrate much better tuning and in this case range error standard

deviation is shcwn. The filter is slightly over-estimating the true error.

The next stage in the sensitivity analysis is to find the error sources

included in the truth mouel which have the most significant effect on track-

ing accuracy. For this problem and an assumed parameter set, it is clear

from results that rate gyro drift and angle track scintillation are the two

predominant error sources. To illustrate this insight, consider the remain-

ing measurements first. A significant error standard deviation in range

me.asurement scintillat.on, bias and noise can 1e tolerated before angle

track accuracy hegins to suffer. Range rate measurement is found to be

superfluots provided range information is available at 2 sec or smaller

intervals. The accelerometers can be of averagc precision capable of

measuring to within about 11, of true acceleration. As rate gyro drift is

improved however, the tracking error standard deviations improve considerably,

but seiisitivity diminishes irntil improvements beyond an error standard devia-

tion of about 0.5 x 10"; rad/sec have little effec . In fact, the rate gyros

could theoretically be perfect and no further improvement would result

because the tracking accuracy is ultimately limited by angle track scintilla-

tion noise. Figure 7 shows a family of sensitivity curves for trackhig
accuracy against gyro drift and angle track scintillation.
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This analysis is based upon an assumed nviuinal trajectory which is

used to evaluate the system matrices. This is an approximate procedure

that is valid for small errors and is exact only for the case of linear

dynamics. However, the procedure is extensively and successfully used for

filter analysis.

The problem is clearly complex and cannot be solved by intuition alone.

In the above simplified description of a sensitivity analysis such improve-

mwit in an error source implies a hardware change. The hardware change

correspondingly results in a truth model parameter change which carries the

penalty of re-tuning or re-designing the reduced order filter. Moreover, as

the sensit ivity analysis proceeds and truth model adjustments (with hardware

implications) are made, the sensitivity characteristic changes. For example,

if in this problem the rate gyro and angle track measurements are both

perfect, the tracking accuracy improves but becomes sensitive to other

meastirements and states such as range, acceleiation and the satellite

orbital estimate. An error b'dget may be used to show the relative benefit

in overall performance of changing one sensor versus another, so that cost

effective hardware decisions may be made.

Figure 8 shows a flow chart for a typical filter performance evaluation.

The inner loop illustrates the reduced order filter tuning and re-designing

to achieve satisfactory performance against a specific truth model. The

outer loop illustrates the hardware requirement and trade-off process through

which the system truth model is adjusted to reflect changes in hardware.
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Conclusions

A general framework has been developed for the application of estimation

techniques to the precision pointing and tracking problem from one accelera.-

ting vehicle to another. Modeling is carried out in the line of sight

coordinate system in which measurement information is most likely to be

available. There is no general model for target motion but it can be ass~umed

that target motion Will most easily be described in inertial coordinates.

Specific prohlems with differing targets will. require different target models.

Trhe problem of handling large computational requirements has been

identified and hence the need to find a reduced order filter and tune this

filter against a full state system truth model. Furthermore, the method o

identifying hardware requirements and trade-offs to nahet specific performance

critcria using the covariance sensitivity analysis has been described.

Finally, the general framework has been applied to the specific problem

of tracking a satellite from an aircraft to an arbitrary degree of precision.

The particular problem involved a high altitude aircraft and a low polar

orbit satellite. Some results following from the covariance sensitivity

analysis for this problem have beeni presented.
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Appendix A

Gravitationai Potential Model

The model for the gravitational potential is

r rk FCk'm c As(mX) + Skm sin(mX)

where ke is the gravitational constant for the earth, m is the mass of

the earth, r is the radial distance of the body from the earth center,

(mn)
Pk~m) are Legendre functions, A. is the longitude of the satellite with

respect to the Greenwich mediu'n, and Ck,m and Sk m are harmonic coef-

ficients for the potential model.

Drag Force

The model for the drag is

Ad = • pBVa ra j

where p is the atmospheric density, assumed exponential, B is the vehicle

ballistic coefficients, Va is the magnitude of vehicle velocity relative

to the rotating atmosphere, mid ý a is the velocity vector of the vehicle

relative to the rotating atmosphere.

Solar Pressure

The model for the solar pressure is

28



= -CKS rvs

where (')vs is the coordinate of the sum rel.ative to the vehicle, K is

a proportionality constants, - is the distance from the smti to the

vehicle, and S is the solar pressure coefficient.
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